Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB
نویسندگان
چکیده
BACKGROUND One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. Cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production of fuels and chemicals, showing promising production rates when compared to crop-based feedstock. However, intrinsic capacities of cyanobacteria to produce biotechnological compounds are limited and yields are low. RESULTS Here, we present an approach to circumvent these problems by employing a synthetic bacterial co-culture for the carbon-neutral production of polyhydroxyalkanoates (PHAs) from CO2. The co-culture consists of two bio-modules: Bio-module I, in which the cyanobacterial strain Synechococcus elongatus cscB fixes CO2, converts it to sucrose, and exports it into the culture supernatant; and bio-module II, where this sugar serves as C-source for Pseudomonas putida cscAB and is converted to PHAs that are accumulated in the cytoplasm. By applying a nitrogen-limited process, we achieved a maximal PHA production rate of 23.8 mg/(L day) and a maximal titer of 156 mg/L. We will discuss the present shortcomings of the process and show the potential for future improvement. CONCLUSIONS These results demonstrate the feasibility of mixed cultures of S. elongatus cscB and P. putida cscAB for PHA production, making room for the cornucopia of possible products that are described for P. putida. The construction of more efficient sucrose-utilizing P. putida phenotypes and the optimization of process conditions will increase yields and productivities and eventually close the gap in the contemporary process. In the long term, the co-culture may serve as a platform process, in which P. putida is used as a chassis for the implementation of synthetic metabolic pathways for biotechnological production of value-added products.
منابع مشابه
Effect of salinity on some physiological and biochemical responses in the cyanobacterium Synechococcus elongatus
In this study, some physiological and biochemical responses of Synechococcus elongatus to salt stress were investigated. The cyanobactrium was grown in BG-11 medium under different concentrations of NaCl (0, 0.5, 1 M). The results indicated that the growth of S. elongatus was significantly inhibited under salt stress on days 5, 9 and 12. Protein content increased in S. elongatus on day 12 in pr...
متن کاملRerouting carbon flux to enhance photosynthetic productivity.
The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-exp...
متن کاملمطالعه خواص ضدباکتریایی عصاره های متانولی، اتری و آبی برخی از گونه های سیانوباکتری ها در شرایط آزمایشگاهی
Background and purpose: Cyanobacteria are rich sources of secondary metabolites. Antibiotic resistant pathogens are rising and people are more interested in using natural products these days. Hence, identifying competent cyanobacteria for the extraction of antimicrobial compounds is of great benefit. The main objective of this study was to investigate the in vitro antibacterial activity of ...
متن کاملEngineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO 2 in Synechococcus elongatus PCC 7942 under light and aerobic condition
Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineerin...
متن کاملThe phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida.
The genome of Pseudomonas putida KT2440 encodes five proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Two of these (FruA and FruB) form a dedicated system for fructose intake, while enzyme I(Ntr) (EI(Ntr); encoded by ptsP), NPr (ptsO), and EII(Ntr) (ptsN) act in concert to control the intracellular accumulation of polyhydroxyalkanoates, a typical product of carbon ove...
متن کامل